Create a comprehensive plan: Start by working with the AI to write a detailed implementation plan in a markdown file
(创建详尽计划:首先与人工智能协作,在 markdown 文件中撰写详细的实施计划)
Review and refine: Delete unnecessary items, mark features as won't do if too complex
(审查与完善:删除不必要的条目,若功能过于复杂则标记为“暂不开发”)
Maintain scope control: Keep a separate section for ideas for later to stay focused
(保持范围控制:单独开辟一个区域记录后续想法,以保持专注)
Implement incrementally: Work section by section rather than attempting to build everything at once
(增量实施:逐段开展工作,而非试图一次性构建所有内容)
Track progress: Have the AI mark sections as complete after successful implementation
(跟踪进度:在成功实施后,让人工智能将对应部分标记为完成)
Commit regularly: Ensure each working section is committed to Git before moving to the next
(定期提交:在推进到下一部分之前,确保每个工作段都提交到 Git)
版本控制策略(Version control strategies)
Use Git religiously: Don't rely solely on the AI tools' revert functionality
(严格使用 Git:不要仅依赖人工智能工具的回退功能)
Start clean: Begin each new feature with a clean Git slate
(全新启动:每个新功能都从干净的 Git 状态开始)
Reset when stuck: Use git reset --hard HEAD if the AI goes on a vision quest
(陷入瓶颈时重置:若人工智能偏离方向,使用 git reset --hard HEAD 命令)
Avoid cumulative problems: Multiple attempts create layers and layers of bad code
(避免累积问题:多次尝试会产生层层糟糕的代码)
Clean implementation: When you finally find a solution, reset and implement it cleanly
(干净实施:当最终找到解决方案时,重置并干净地实施)
测试框架(Testing framework)
Prioritize high-level tests: Focus on end-to-end integration tests over unit tests
(优先高层测试:相较于单元测试,更关注端到端的集成测试)
Simulate user behavior: Test features by simulating someone clicking through the site/app
(模拟用户行为:通过模拟用户点击网站/应用来测试功能)
Catch regressions: LLMs often make unnecessary changes to unrelated logic
(捕捉回归问题:大型语言模型常对不相关逻辑进行不必要的修改)
Test before proceeding: Ensure tests pass before moving to the next feature
(测试后推进:在开展下一个功能前,确保测试通过)
Use tests as guardrails: Some founders recommend starting with test cases to provide clear boundaries
(将测试用作护栏:一些创始人建议从测试用例入手,以明确边界)
有效调试(Effective bug fixing)
Leverage error messages: Simply copy-pasting error messages is often enough for the AI
(利用错误信息:简单复制粘贴错误信息通常足以让人工智能处理)
Analyze before coding: Ask the AI to consider multiple possible causes
(编码前分析:让人工智能考虑多种可能的原因)
Reset after failures: Start with a clean slate after each unsuccessful fix attempt
(失败后重置:每次修复尝试失败后,从干净状态重新开始)
Switch models: Try different AI models when one gets stuck
(切换模型:当一个模型陷入瓶颈时,尝试不同的人工智能模型)
Clean implementation: Once you identify the fix, reset and implement it on a clean codebase
(干净实施:一旦确定修复方案,在干净的代码库上重置并实施)
AI 工具优化(AI tool optimization)
Create instructions files: Write detailed instructions for your AI in appropriate files (cursor.rules, windsurf.rules, claude.md)
(创建指令文件:在合适的文件(如 cursor.rules、windsurf.rules、claude.md)中为人工智能编写详细指令)
Local documentation: Download API documentation to your project folder for accuracy
(本地文档:将 API 文档下载到项目文件夹以确保准确性)
Use multiple tools: Some founders run both Cursor and Windsurf simultaneously on the same project
(使用多种工具:一些创始人在同一个项目中同时运行 Cursor 和 Windsurf)
Tool specialization: Cursor is a bit faster for frontend work, while Windsurf think longer
(工具专业化:Cursor 在前端工作上稍快,而 Windsurf 思考时间更长)
Compare outputs: Generate multiple solutions and pick the best one
(比较输出:生成多种解决方案并挑选最佳的一个)
复杂功能开发(Complex feature development)
Create standalone prototypes: Build complex features in a clean codebase first
(创建独立原型:首先在干净的代码库中构建复杂功能)
Use reference implementations: Point the AI to working examples to follow
(使用参考实现:将人工智能指向可遵循的工作示例)